

FKITMCMXIX

BIONANOKOMPOZITI NA BAZI POLIHIDROKSIALKANOATA ZA ODRŽIVO PAKIRANJE HRANE POLYHYDROXYALKANOATES-BASED BIONANOCOMPOSITES FOR SUSTAINABLE FOOD PACKAGING

Ema Čemerika¹, Jasmina Ranilović², Dajana Kučić Grgić¹, Anita Štrkalj³, Vesna Ocelić Buatović¹ ¹Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije, Trg Marka Marulića 19, 10000 Zagreb

²Podravka d.d., Ante Starčevića 32, 48 000 Koprivnica

³Sveučilište u Zagrebu Metalurški fakultet, Aleja narodnih heroja 3, 44 00 Sisak

SAZETAK

U ovom radu ispitana su svojstva nanokompozita na bazi poli(3-hidroksibutirat-ko-3-hidroksivalerata) s 1, 3, 5, 7 i 10 mas. % titanijeva dioksida (TiO₂), kako bi se ocijenila njihova prikladnost za korištenje u industriji pakiranja hrane. Toplinska svojstva ispitana su diferencijalnom pretražnom kalorimetrijom (DSC) i termogravimetrijskom analizom (TGA). Morfologija prijelomnih površina nanokompozita istražena je pretražnim elektronskim mikroskopom i energodisperzivnim detektorom X-zraka (SEM/EDX). Površinske karakteristike nanokompozita određene su mjerenjem kontaktnog kuta. Uvid u mehanička svojstva materijala, prekidnu čvrstoću, prekidno istezanje i Youngov modul dobivena su ispitivanjem na mehaničkoj kidalici te analizom krivulja naprezanje/istezanje. Propusnost vodene pare ispitana je Herfeldovom metodom. Rezultati ovih ispitivanja daju uvid u poboljšana svojstva PHBV/TiO₂ nanokompozita te njihovu potencijalnu primjenu u industriji pakiranja hrane kao održiva ambalaža.

EKSPERIMENTALNI U **ET**

REZ

University of Zagreb Faculty of Chemical

Engineering and Technology

MATERIJALI **PHBV** – ENMATTM Y1000P **nTiO₂** – Sigma-Aldrich, SAD

***** Diferencijalna pretražna kalorimetrija, DSC (*Mettler Toledo DSC 3+ Star^e System*) Dva ciklusa zagrijavanja i jedan ciklus hlađenja; 1. 25-200°C; 2. 200- -50°C; 3. 25-200°C

PRIPREMA NANOKOMPOZITA PHBV/TiO₂ (1, 3, 5, 7 i 10 mas. %)

Umješavanje na Brabender gnjetalici – 182°C; 50 okr/min; 10 min Prešanje i hlađenje na hidrauličkoj preši (Fontune Holland)

180°C; 3 min (pločice)/5 min (tanki filmovi), pod tlakom, uz predgrijavanje

(10°C/min; protok N₂ 60 ml/min)

- ***** Termogravimetrijska analiza, TGA
- (*Mettler Toledo TGA/DSC 3+ Star^e System*)
 - 25-700°C (10°C/min)
- **Skenirajuća elektronska mikroskopija** (SEM VEGA3 TESCAN)
- Slobodna energija površine (DataPhysics OCA 20 Instruments)
 - T=23°C, 60% RH
 - testne kapljevine: voda, formamid, dijodmetan
- * Propusnost vodene pare po Herfeldu
- * Mehanička svojstva (AllroundLine Zwick)
 - Istezanje: 10 mm/min, razmak čeljusti: 50 mm, T=25°C

DSC termogrami ciklusa (a) zagrijavanja i (b) hlađenja

Rezultati dobiveni DSC analizom za PHBV matricu i PHBV/TiO₂ nanokompozite

Uzoroj	T _m	ΔH_m	T _c	ΔH_c	Xc
UZOFCI	°C	J/g	°C	J/g	%
PHBV	171,8	92,0	124,8	87,5	63,0
PHBV_1_TiO ₂	172,0	95,8	125,9	89,2	65,6
PHBV_3_TiO ₂	171,1	94,6	123,0	86,1	64,8
PHBV_5_TiO ₂	168,7	93,8	125,8	86,8	64,2
PHBV_7_TiO ₂	166,7	91,8	125,4	84,2	62,9
PHBV_10_TiO ₂	166,0	85,5	125,0	77,7	58,6

Rezultati dobiveni TG analizom za PHBV matricu i PHBV/TiO₂ nanokompozite

		DTG			
Uzorci	T _{poč}	T _{kraj}	Δm	R _{700°C}	T _{max}
	°C	°C	%	%	°C
PHBV	240,0	290,0	98,7	1,3	286,6
PHBV_1_TiO ₂	260,0	310,0	98,4	1,4	297,5
PHBV_3_TiO ₂	260,0	310,0	97,0	2,7	297,2
PHBV_5_TiO ₂	250,0	295,0	94,9	4,7	285,6

nTiO₂ povećava toplinsku stabilnost PHBV matrice. SEM mikrografije pokazuju dobru raspodjelu TiO₂ u PHBV matrici, uz manje vidljive aglomerate u PHBV_10_TiO₂ nanokompozitu. TiO₂ utječe na povećanje propusnosti vodene pare, dok povećanjem udjela dolazi do smanjenja vrijednosti propusnosti vodene pare i slobodne energije površine. Dodatak 3 i 5 mas. % nTiO₂ u PHBV matricu poboljšava mehanička svojstva PHBV matrice.

