

# PHOTOLYTIC DEGRADATION OF **N-NITROSAMINES**



### Katarina Marija Drmić, Karla Krešić, Sandra Babić, Silvia Morović, Krešimir Košutić

University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19 HR-10000 Zagreb kdrmic@fkit.unizg.hr

**NDMA** 

## INTRODUCTION

Numerous disinfection by-products (DBP) are formed from reactions between disinfectants and organic/inorganic substances during water disinfection. Many DBPs have been confirmed to be harmful to human health, including nitrogencontaining DBPs, such as nitrosamines. Therefore, it is necessary to develop effective processes for the removal of DBPs from water, such as advanced oxidation and membrane processes. In this work, the photolytic degradation of N-nitrosamines in ultrapure, pool and brackish water and in the retentate after the RO/NF process using a UV-LED photoreactor was investigated.

## **MATERIALS AND METHODS**

 $N \equiv O$ 

Reactor

**NDEA** 

 $O \equiv N - N$ 

NMOR



#### **Magnetic stirrer**

#### Arduino control board

A cylindrical quartz lab-scale reaction vessel with an inner diameter of 37 mm, length of 150 mm and wall thickness of 1.5 mm was used. Sections of the UV-LED strip were attached as vertical columns on cylindrical supports with a diameter of 60 mm so that the distance of the radiation source from the reactor wall was 10 mm.

| LED                      | VALUES |            |
|--------------------------|--------|------------|
| SPECIFICATION            | UV-A   | UV-C       |
| EMISSION ANGLE           | 120°   | 120°       |
| LED SPACING              | 8.3 mm | 16.6<br>mm |
| WAVELENGTH               | 365 nm | 272 nm     |
| LED SOURCES PER<br>STRIP | 15     | 8          |

Four different cylindrical LED supports were used:

- 6 columns and UV-A LEDs, 1)
- 6 columns and UV-C LEDs, 2)
- 3 columns and UV-A LEDs, 3)
- 4) 3 columns and UV-C LEDs.



Aliquots of irradiated N-nitrosamines solution were analysed by HPLC-DAD on Kinetex C18 (Phenomenex, 150 mm x 4.6 mm, 5 mm, 100 Å) chromatographic column. The mobile phase was composed of MilliQ water (A) and acetonitrile (B). The flow rate was 0.5 mL/min. The column temperature was 20 °C. The injection volume for each sample was 20 μL.

#### UV-A LED UV-C LED

#### **HPLC** analysis





NPIP

 $\sqrt{-0}$ 

### RESULTS

For further experiments, 6 columns UV-A LEDs were used because of the fastest degradation of N-nitrosamines.











- 1) By reducing the distance of the LEDs from the reactor and using UV-A LEDs, faster degradation of N-nitrosamines is obtained.
- 2) Matrix affects the photodegradation of *N*-nitrosamines. The photolytic degradation of N-nitrosamines in pool water was slower than degradation in brackish water.
- Degradation in brackish water with 5 ‰ salinity was slightly faster than 3) degradation of *N*-nitrosamines in sea water with 30 ‰ salinity.



| 5 ‰ Na                                | CI                     | 30 ‰ Na                  | aCl                    |
|---------------------------------------|------------------------|--------------------------|------------------------|
| k <sub>app</sub> (min <sup>-1</sup> ) | t <sub>1/2</sub> (min) | k <sub>app</sub> (min⁻¹) | t <sub>1/2</sub> (min) |
| NDMA                                  |                        | NDMA                     |                        |
| 0.0655                                | 10.58                  | 0.0575                   | 12.05                  |
| NMOR                                  |                        | NMOR                     |                        |
| 0.2421                                | 2.86                   | 0.1735                   | 4.00                   |
| NPIP                                  |                        | NPIP                     |                        |
| 0 1 2 0 /                             | 1 07                   | 0 1 2 0 5                | 5 75                   |

|                                                                                                                                | K <sub>app</sub> (min⁻⁺)                                                                                              | t <sub>1/2</sub> (min)                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| λ_Ν                                                                                                                            | NDMA                                                                                                                  |                                                                                                                 |  |
| 365_6                                                                                                                          | 0.0446                                                                                                                | 15.54                                                                                                           |  |
| 365_3                                                                                                                          | 0.0361                                                                                                                | 19.20                                                                                                           |  |
| 272_3                                                                                                                          | 0.0025                                                                                                                | 277.26                                                                                                          |  |
| 272_6                                                                                                                          | 0.0045                                                                                                                | 154.03                                                                                                          |  |
| λ_Ν                                                                                                                            | NMOR                                                                                                                  |                                                                                                                 |  |
| 365_6                                                                                                                          | 0.9805                                                                                                                | 0.71                                                                                                            |  |
| 365_3                                                                                                                          | 0.1219                                                                                                                | 5.69                                                                                                            |  |
| 272_3                                                                                                                          | 0.0302                                                                                                                | 22.95                                                                                                           |  |
| 272_6                                                                                                                          | 0.0417                                                                                                                | 16.62                                                                                                           |  |
|                                                                                                                                | NPIP                                                                                                                  |                                                                                                                 |  |
| λ_Ν                                                                                                                            | NP                                                                                                                    | IP                                                                                                              |  |
| λ_Ν<br>365_6                                                                                                                   | <b>NP</b><br>0.116                                                                                                    | IP<br>5.98                                                                                                      |  |
| λ_Ν<br>365_6<br>365_3                                                                                                          | NP<br>0.116<br>0.0788                                                                                                 | IP<br>5.98<br>8.80                                                                                              |  |
| λ_Ν<br>365_6<br>365_3<br>272_3                                                                                                 | NP<br>0.116<br>0.0788<br>0.0141                                                                                       | IP<br>5.98<br>8.80<br>49.16                                                                                     |  |
| λ_Ν<br>365_6<br>365_3<br>272_3<br>272_6                                                                                        | NP<br>0.116<br>0.0788<br>0.0141<br>0.0340                                                                             | IP         5.98         8.80         49.16         20.39                                                        |  |
| λ_Ν<br>365_6<br>365_3<br>272_3<br>272_6<br>λ_Ν                                                                                 | NP 0.116 0.0788 0.0141 0.0340 ND                                                                                      | IP<br>5.98<br>8.80<br>49.16<br>20.39<br>EA                                                                      |  |
| λ_Ν<br>365_6<br>365_3<br>272_3<br>272_6<br>λ_Ν<br>365_6                                                                        | NP 0.116 0.0788 0.0141 0.0340 ND 0.0965                                                                               | IP<br>5.98<br>8.80<br>49.16<br>20.39<br>EA<br>7.18                                                              |  |
| <ul> <li>λ_Ν</li> <li>365_6</li> <li>365_3</li> <li>272_3</li> <li>272_6</li> <li>λ_Ν</li> <li>365_6</li> <li>365_3</li> </ul> | NP 0.116 0.0788 0.0141 0.0340 ND 0.0965 0.0612                                                                        | IP         5.98         8.80         49.16         20.39         EA         7.18         11.33                  |  |
| <pre>λ_Ν 365_6 365_3 272_3 272_6 λ_Ν 365_6 365_3 272_3</pre>                                                                   | NP         0.116         0.0788         0.0141         0.0340         ND         0.0965         0.0612         0.0073 | IP         5.98         8.80         49.16         20.39         20.39         7.18         11.33         94.95 |  |



