DEVELOPMENT AND VALIDATION OF UHPLC-MS/MS METHOD FOR SIMULTANEOUS QUANTIFICATION OF ASCORBIC AND DEHYDROASCORBIC ACIDS

Ana Vučak, Petra Zelić, Franko Burčul

K T F

SVEUČILIŠTE U SPLITU Faculty of Chemistry and Technology, University of Split, Rudera Boškovića 35, 21 000 Split, Croatia KEMIJSKO-TEHNOLOŠKI FAKULTET ana.vucak@ktf-split.hr

13 V 17 V

17 V 10 V

INTRODUCTION

Ascorbic acid (AA) \rightarrow the active form of vitamin C present in food and commonly used as a dietary supplement.

Under oxidative conditions, AA is readily converted to dehydroascorbic acid

 $(DHAA) \rightarrow$ also possesses biological activity.

When analysing vitamin C content, it is important to consider both AA and DHAA.

EXPERIMENTAL

Standard solutions \rightarrow standards of AA and DHAA and water as a solvent Instruments \rightarrow UltiMate 3000RS and TSQ Quantis (Thermo Fisher Scientific) The main problem in the AA analysis is related to its instability \rightarrow solutions and samples were prepared and analysed within 1 hour, amber vials, autosampler temperature at 4 °C

MS/MS optimization	AA	DHAA					
Mode	ESI negative; MRM						
Quantifier (CE)	175 → 115 (10 V)	173 → 143 (8 V)					
Qualifier (CE)	175 → 87 (17 V)	173 → 71 (12 V)					
RF Lens Voltage	62 V	67 V					
Spray Voltage	3 600 V						
Sheath gas	43.9	Arb					
Auxiliary gas	6.1 Arb						
Sweep gas	0 Arb						
CID gas	1.5 mTorr						
Ion Transfer Tube Temperature	325	o °C					
Vaporizer Temperature	350 °C						

LC optimization							
Mobile phase	water						
Organic modifier	0.1% acetic acid						
Flow rate	0.7 mL/min						
Pump	isocratic						
Run Time	3 min						
Stationary phase	Zorbax Eclipse XDB-C18 (Agilent)						
Column dimensions	100 × 3.0 mm; 3.5 μm						
Column temperature	20 °C						
Sample injection volume	5 µL						

Chromatogram of DHAA and AA

_ ₂₀] [_								m/z		I_{R}		5.U = (A	82 mir	1	$I_{R}($	AA) =	1.05 m	nin		-1					m/z
50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0 160.0	-5.0e3	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	1.97	-20 -	 400.0	1 1	440.0	420.0	425.0

Method validation	AA	DHAA	AA	DHAA		
Calibration range	10–50 μg/n	nL (9 points)	0.50–5.0 µg/mL (5 points)			
Calibration curve equation	y=1555x+6882	y=94x+175	y=2352x-421	y=252x-97		
Linearity (R ²)	0.9981	0.9992	0.9981	0.9988		
Accuracy (RE)	0.09–9.61%	0.06-6.54%	1.20-5.84%	0.60–17.0%		
Quality control solutions	10; 30; 4	45 μg/mL	2.5 µg/mL			
Intra-day precision (5 times)	15.91; 1.14; 2.69%	17.64; 3.40; 3.03%	0.86%	7.41%		
Inter-day precision (5 days)	6.35; 2.88; 5.13%	16.34; 12.54; 8.92%	3.58%	3.01%		
RSD (flow: ±0.1 mL/min)	< 2.39%	< 7.85%	3.38%	37.08%		
RDS (column temp: ±4 °C)	< 5.52%	< 10.89%	2.95%	1.77%		
RSD (stability: 1,2,3,5,24 h)	10.30; 5.33; 4.47% (5	h) VS > 38.02% (24 h)) 5.87% (5 h) VS 41.03% (24 h)			
Limit of Detection	2.1 ng/mL	18.7 ng/mL	18.7 ng/mL Specificity \rightarrow technology inherent justification			
Limit of Quantification	7.2 ng/mL	62.3 ng/mL	System suitability \rightarrow no carry-over Repeatability \rightarrow 0.10% (AA) and 3.47% (DHA)			

Real samples	Declared	Measured amount						
analysis	vitamin C	AA	DHAA					
Cedevita	213 mg/100 g	203	7					
σ_{Cedevita} (n =3)		3.4	0.2					
Naturel Vitamin C 500 mg direkt	500 mg/ 3 g (1 bag)	603	48					
$\sigma_{\text{Naturel}} (n = 3)$		6.8	3.9					

CONCLUSION

UHPLC-MS/MS is a suitable technique for the simultaneous quantification of ascorbic and dehydroascorbic acids due to its high sensitivity and selectivity.

The developed method is simple (no need for oxidation/reduction or derivatization) and fast (3 minutes).

The method validation parameters were proven satisfactory and the procedure presented was successfully applied to analyse supplements with a declared amount of vitamin C.

References

[1] L. Nováková, P. Solich, D. Solichová, Trac-Trends Anal. Chem. 27 (2008) 942-958. [2] ICH Harmonised Guideline: Validation of analytical procedures Q2(R2), 2022.

This research is supported by the PRIMA program (supported by EU) under project SEAFENNEL4MED.

