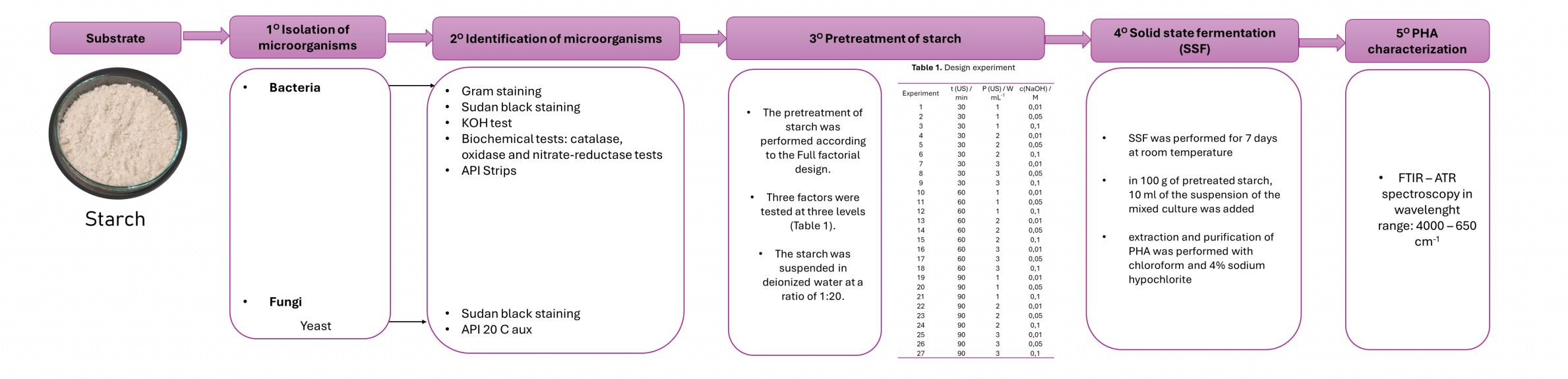
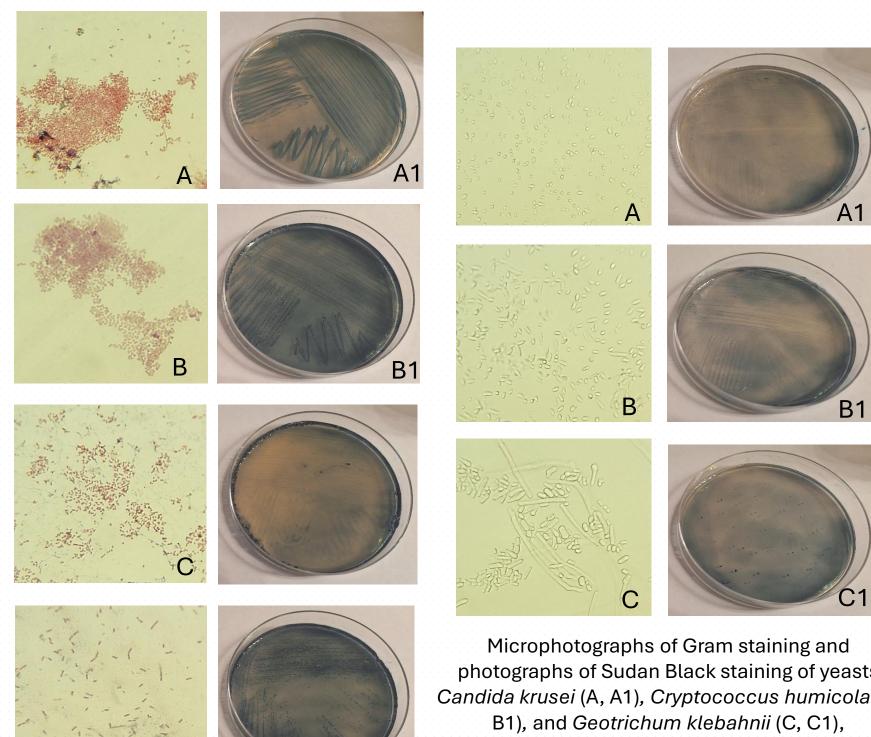


Optimisation of the production process of polyhydroxyalkanoates from waste biomass

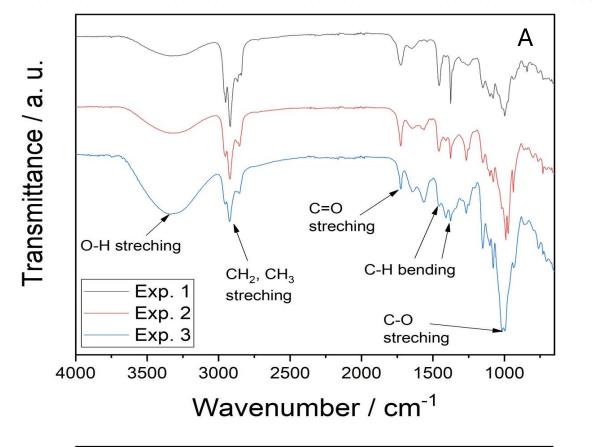
Karlo Grgurević¹, Martina Miloloža¹, Krešimir Stublić², Vesna Ocelić Bulatović¹, Jasmina Ranilović³, Šime Ukić¹, Matija Cvetnić¹, Marinko Markić¹, Stela Jokić⁴, Krunoslav Aladić⁴, Drago Šubarić⁵, Tomislav Bolanča⁶, Dajana Kučić Grgić¹

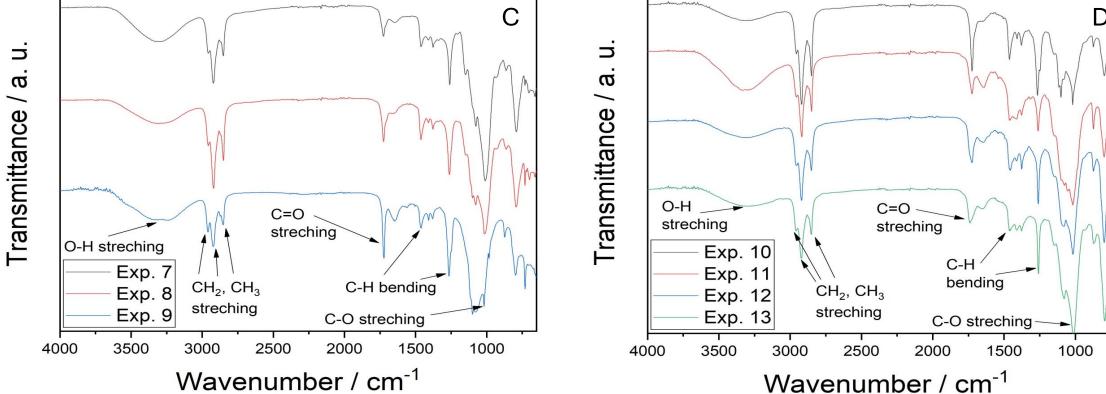

> ¹University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10 000 Zagreb ²AQUA V.M.V. d.o.o., Ulica kralja Zvonimira 98, 10 000 Zagreb ³Podravka d.d., Ante Starčevića 32, 48 000 Koprivnica ⁴Josip Juraj Strossmayer University of Osijek Faculty of Food Technology Osijek, Franje Kuhača 18, 31 000 Osijek ⁵Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31 000 Osijek ⁶University of Zagreb, Trg Republike Hrvatske 14, 10 000 Zagreb

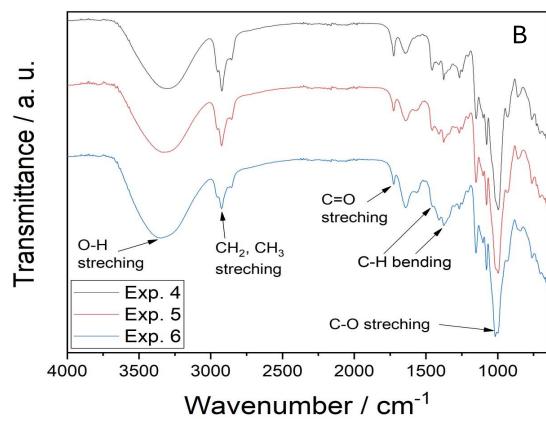
INTRODUCTION

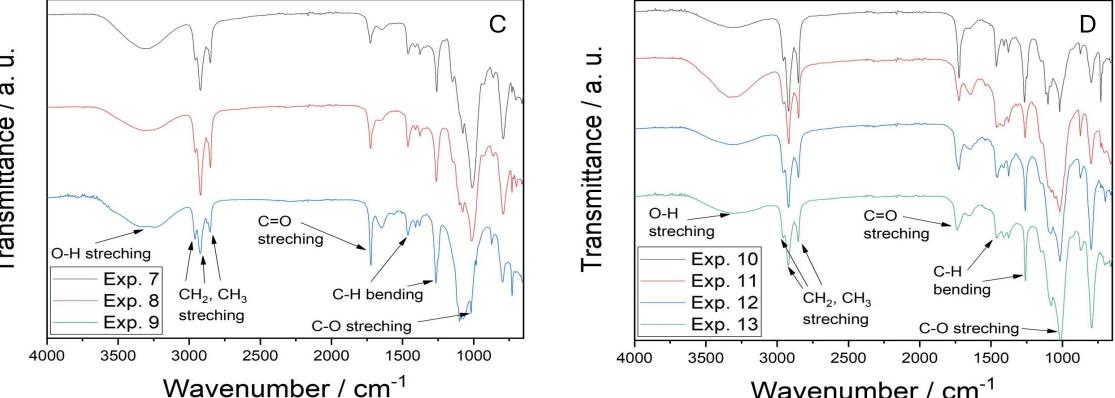

- The plastic of today synthetic polymers made from petroleum and petroleum derivatives
- Problems with synthetic polymers excessive production and accumulation; non-biodegradable
- Scientific research \rightarrow Biodegradable polymers polyhydroxyalkanoates (PHA)
- PHA produced by fermentation (submerged fermentation (SmF) and solid state fermentation (SSF))
- PHA Reserve energy source in the cytoplasm of microorganisms
- Agro-industrial waste PHA production and appropriate disposal
- **This research** \rightarrow waste starch, pretreatment of starch by ultrasound and NaOH solutions (Full factorial design), and SSF

MATERIALS & METHODS


RESULTS




D1


Accumulation of PHA obtained by SSF of waste starch after 7 days.

	Experiment	PHA accumulation /
		%
	1	00670
	2	0.3184
	3	0.1498
	4	0.5572
	5	0.1872
	6	0.2145
	7	0.0063
	8	0.0582
	9	0.0278
	10	0.0311
	11	0.0033
	12	0.0023
	13	0.0069
	14	0.0256
	15	0.0684

Microphotographs of Gram staining and photographs of Sudan Black staining of bacteria Leukonostoc sp. (A, A1), Bacillus licheniformis (B, B1), Citrobacter freundii (C, C1), Staphilococcus lentus (D, D1), respectively, isolated from starch.

D

Microphotographs of Gram staining and photographs of Sudan Black staining of yeasts Candida krusei (A, A1), Cryptococcus humicola (B, respectively, isolated from starch.

	18	0.0060
	19	0.0212
	20	0.1347
3,	21	0.0404
	22	0.0388
	23	0.0308
	24	0.1223
	25	0.0333
	26	0.0302
	27	0.5105

16

17

FTIR spectra of PHA obtained by SSF of starch in experiments 1, 2, and 3 (A), 4, 5, and 6 (B), 7, 8, and 9 (C), 10, 11, 12, and 13 (D) after 7 days.

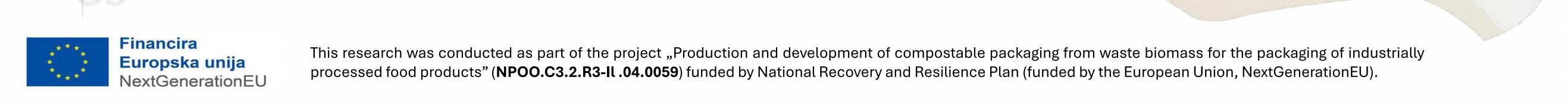
Optimal conditions for starch pretreatment to achieve the highest PHA accumulation.

t (US) / min	<i>P</i> (US) / W mL ⁻¹	c(NaOH) / mol L ⁻¹
30.00	1.71	0.01

Characteristic functional groups of PHA obtained by FTIR-ATR spectroscopy.

0.0274

0.0098


Bond	Wavenumber, cm ⁻¹
C = O streching	1728, 1730
C - H bending	1380, 1383, 1454, 1456, 1462
C – O streching	990, 1005, 1015, 1263
O - H streching	3300
CH_3 , CH_2 streching	2850, 2852, 2920, 2922, 2925, 2960

CONCLUSION

- 4 bacteria and 3 yeasts suitable for PHA production were isolated and identified from waste starch
- Starch pretreatment was performed according to a Full factorial design by varying the duration of the ultrasonic bath, the ultrasonic power, and the NaOH concentration, c(NaOH)
- PHA production was carried out by solid state fermentation
- The bonds observed in the FTIR spectrum at approximately 1730, 1380-1465, 1000-1300, 3300 and 2850-2970 cm⁻¹ represent C=O ester, -CH, C–O, -OH, CH₃ and CH₂ bonds, respectively, which are characteristic of PHA

