

HOLOGRAM QSAR MODEL FOR THE ANTIFUNGAL ACTIVITY OF COUMARIN-1,2,4-TRIAZOLES

Maja Karnaš¹, Vesna Rastija¹, Domagoj Šubarić¹, Dejan Agić¹

¹Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, Osijek

INTRODUCTION

The hologram quantitative structure-activity relationship (HQSAR) is a two-dimensional QSAR method that uses substructural fragments in a molecule as descriptors relevant to its biological activity. Generated molecular holograms encode all possible fragments within a determined radius, including branched, cyclic, and overlapping fragments. Therefore, HQSAR can help identify the most significant fragment or atom contribution in explaining the variation in activity [1].

Sclerotinia sclerotiorum is a nonspecific, highly destructive plant pathogen infecting over 500 plant species, causing severe crop damage and production loss. Recently, we tested the antifungal activity of coumarin-1,2,4-triazoles on several phytopatogenic fungi and obtained very good results of the *S. sclerotiorum* growth inhibition [2]. The aim of this work was to employ the HQSAR to elucidate the structural features important for the observed antifungal activity of coumarin-1,2,4-triazoles against *S. sclerotiorum*.

1h: R ₁ = 4-OMePh	2h: R ₁ = Me, R ₂ = 1-naphthyl	3h: R ₁ = H, R ₂ = Ph
1i: R ₁ = <i>p</i> -tolyl	2i: R ₁ = Me, R ₂ = 4-OMePh	
1j: R ₁ = Et	2j: $R_1 = Me$, $R_2 = p$ -tolyl	
1k: R ₁ = Ph	2k: R ₁ = Me, R ₂ = Et	
	2I: R ₁ = Me, R ₂ = Ph	
	2m: R ₁ = Me, R ₂ = 4-BrPh	
	2n: R ₁ = Me, R ₂ = 4-CIPh	
	2o: R ₁ = Me, R ₂ = H	

General structures of coumarin-1,2,4triazoles

METHODS

The models were generated by ChemMaster Basic 1.2 software on a set of 28 compounds (model training set) using circular fragment selection within the topological radius of 4 (including bond order and chirality). The logarithmic values of mycelial growth inhibition percentage [2] were used as the response variable. The best model underwent internal and external validation.

RESULTS

Statistical parameters for the best obtained HQSAR model

	Training (28 compounds)	Cross- validation*	External validation**
R ²	0.734	0.602	0.762
RMSE	0.068	0.086	0.055
MAE	0.052	0.071	0.049

 R^2 - correlation coefficient; *RMSE* - root-mean-square error; *MAE* - mean absolute error

* Internal validation of the model

** performed on the randomly chosen test set (1k, 2h, 2m, 2o, 3a, 3c)

Observed versus predicted values of *S. sclerotiorum* inhibition for coumarin-1,2,4-triazoles calculated by the HQSAR model

Graphical representation of atom contributions according to the HQSAR model, for the least and the most active coumarin-1,2,4-triazoles (observed percent growth inhibition of *S. sclerotiorum* in brackets)

CONCLUSIONS

- The analysis indicated that the coumarin moiety contributed more to the increased activity than the triazole part.
- Triazole moiety had a more prominent role when linked to C-7 of the coumarin core.
- Contribution of coumarin moiety to the antifungal activity was significantly reduced if the methyl group at C-4 was absent.

REFERENCES AND ACKNOWLEDGEMENTS

[1] T.W. Heritage, D.R. Lowis, ACS Symposium Series, 719 (1999) 212-225.
[2] M. Karnaš, V. Rastija, K. Vrandečić, J. Ćosić, G. Kanižai Šarić, D. Agić, D.

This work was supported by the Faculty of Agrobiotechnical Sciences Osijek, University of Osijek,

